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STABLE EQUILIBRIA IN A SCALAR PARABOLIC EQUATION

WITH VARIABLE DIFFUSION

*; by
.7

G. Fusco and J. K. Hale

Abstract

A scalar parabolic equation with nonconstant diffusion and nonlinear

source term is considered and some aspects of the influence of chang-

ing the diffusion on existence, stability and bifurcation properties

of the equilibria are discussed.
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1. Introduction

We deal with existence stability and bifurcation properties of equi-

libria of the problem

ut = u (x )x + f(u), x E (-1,1)

(1)
Ux(-,t)= U(1,t) = 0

where c > 0 is a continuous function and f is Cl.

The initial value problem for (1) is well posed in the Sobolev space

H1 (-1,1), [l],and any bounded orbit approaches an equilibrium as t = (13],

[5],[7]). Therefore a basic problem in understanding the dynamic of (1) is

the description of the set of equilibria of (1) and of the way this set

changes with the diffusion function c and with the source term f. Related

important problems are the characterization of the pairs (c,f) such that

(1) has stable nonconstant equilibria and to understand the role of bifurca-

tion in the appearance of stable equilibria.

For any nonlinear function f, Chafee [6] proved that when c is con-

stant, no stable nonconstant equilibrium exists. Chafee's result was generaliz-

ed by Hale and Chipot [2] that showed that the same result holds true if

c E C2 and cxx < 0. Finally, Yanagida [10] has shown that if c is written

2as c = a , a > 0 a necessary and sufficient condition for the nonexistence

of a function f such that (1) has a stable nonconstant equilibrium is that

a < 0. Other results concerning the existence of stable nonconstant equili-xx

bria are due to Matano ([7],[9]) that has shown that, if f is a cubic poly-

3
nomial as f * u - u and c(x) I 1 on intervals [-l~a],[8,l] and < c

.) )-= --. j.., - . - .- .. .. -. -. -. ... . . . . . . .. . . . ... . . .. . . .. . .
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on [y,6] a < y < 6 < 8 and c is sufficiently small, then (1) has a

stable nonconstant equilibrium. Fife and Peletier [13] have also considered

equations related to (1) which have stable nonconstant equilibria.

For the n dimensional version of problem (1) in a bounded domain Q

and with constant diffusion, Casten and Holland [11] and Matano [8] have

shown that,if a is convex,any stable equilibrium must be a constant.

Matano has also shown that, assuming f of the type f = u - u , for some

nonconvex domains, there exist stable nonconstant equilibria. Hale and Vegas

[4] have shown the existence of stable nonconstant equilibria for a large

class of nonlinearities and for domains a that can be considered as pertur-
"

bations of a domain a0 which is the union of two disjoint convex domains.

We assume that c is even and f is odd and such that

Sf(0) = f(1) = 0

f(u) > 0 for u E (0,I)
(2)1

f(u) < 0 for u E (1,-),

f'C0) 0 , f'Cl) 0 .

,0.

N (see fig. 1.)

Under these assumptions we give an estimate of the number of equilibria

of (1) in terms of c and f. We prove that for any f of type (2), if c

is sufficiently close to the step function

1 for x E [-1,t] U [L,l],

KC (3) c =

0 for x(-,), 0 < I < 1

and c0  is sufficiently small, problem (1) has at least a pair of stable non-

constant odd monotone equilibria. Finally, we show that if c = c depends on
S..
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Fig. 1

a parameter vi C [0,1] and Ui is an equilibrium of (1) with exactly k

zeros that bifurcates at ~j=0 from the zero equilibrium and becomes stable

at ~ I 1 then as P goes from 0 to 1, u must go through at least k

secondary bifurcations.
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2. Existence

We are interested in studying problem (1) for c in the set ' of

continuous and positive functions c: [-1,1] -*IR. Nevertheless, for the

analysis that follows, in particular for the discussion of stability where

we consider function c that are "close" to the step function c defined

by (3), it is convenient to study problem (1) for a wider class of diffusion

functions c that are allowed to have jump discontinuities at a finite

number of fixed points in [-1,1]. To keep the notation simple and since we

suppose c even, we consider only the case of two points of discontinuity

at x = ±L, 0 < I < 1. Everything we say extends to the case of any number

of points of discontinuity.

Let i be the set of nonnegative even functions c: [-1,1] -), which

have continuous restrictions to [Ot) and to [1,1] and possess the left

limit c(I-) of c(x) as x 1. For any c Ei let J cE 2 be the set

Jdf {(xy)lx = , y E [c(I-),c(I)]} and C def J U graph c. We sup-

pose that li is endowed with the topology associated with the following

notion of convergence that allows a sequence of continuous functions to con-

verge to a function that has a jump at x = ±Z: we say that cn Ei',

nnn =1.... converges to c E if and only if Cn  converges to C in the

sense of Hausdorff as n ®.

The class of diffusion function that we are going to consider is the

subset fda+ V defined by the condition inf c > 0. Clearly, -i is a dense

subset of Sf and if we assume in W the topology of uniform convergence in

[-1,1], then SC is continuously embedded in i . Henceforth we allow c in

~~~~~~~. o. ......... ............- .-... . .



problem (1) to be a generic c Ei?+ . This requires that (1) be complemented

with the jump conditions

c(± )u (±I+) = c(+L-)u x(±),

therefore the equilibrium problem corresponding to (1) becomes

(cux) x + f(u) = 0

:4) Ux:-) = Ux+l) = 0

.C4.+1) UxC () = c x+I )UxC+ )

and reduces to the standard problem for c Er '.

By letting u = u, v = cux, problem (4) transforms in the equivalent

system

r -x c'
* I"

(5)X =

(S)  v x =-f(u),

v-1)= v(l) = 0.

Note that the jump conditions express just continuity of v at x =

and therefore they are included in the requirement that u,v be continuous

. in (-1,1].

The hypothesis on f and a maximum principle argument imply that

solutions of (4) or (5) satisfy -1 < u(x) 1 1, therefore we can also

assume that f is bounded so that the solution u(c,a,x), v(c,a,x) of the

initial value problem

4%

,'. :... .,: --... ,,-....-, ...-.- ,.,. ., . ,. .,. ,... . , .. .. . . .. , ,,, ..
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(6) v -f(u),

u(-1) = a, v(-1) =0

is defined for all (c,a,x) E X [-1,1] x [-1,1].

Lemma 1. u(c,a,x), v(c,a,x) are continuous functions of (c,a) uniformly

in x and possess a continuous first derivative with respect to a and

also with respect to x except possibly at x ±_.

The proof of this lemmais a standard application of the general theory

of differential equations.

To discuss the existence of space dependent equilibria of (1), i.e.,

the existence of nonconstant solutions of (4), we note that these solutions

are in one to one correspondence with the a 0 -1,0,1 such that v(c,a,l) = 0.

If, for a 0 0, we let 6(c,a,x) be the angle (positive clockwise around

x in space u,v,x) swept by the vector (c,a,x') defined by

u(c,a,x)".
u(c,a,xl) = v(c,axl)l

when x1 goes from -1 to x, then a necessary and sufficient condition

in order that v(c,a,1) = 0 for some a -1,0,1 is that 6(c,a,l) be

equal to k for some integer k 0 0.

The angle 6(c,a,x) can be defined also for a 0 so that 6(c,a,x)

is continuous in (c,a,x). In fact by performing the polar coordinate trans-

h '. .-.- -, % ,- . - -, . .. . .-
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formation u = P cos 6, v = -p sin 6 it is found that 6(c,a,) is the

solution of the problem

1 26 f(u(c,a,x)) cos26,c)x c u(c,a,x)
|. (7)

6(-l) =0.

Moreover, since by lemma 1, u(c,a,x) is continuous in (c,a) uniformly

in x and u(c,o,x) = 0, it follows that if (c',a) converges to (c,o)

in x [-1,1], f(u(c',a,x))/u(c',a,x) converges uniformly to f'(0) in

[-1,1]. This implies that as (c',a) - (c,0), 6(c',a,x) converges

uniformly to the solution 6(c,0,-) of the problem

6x = sin 26 + f'(0)cos 26,

(8) C(X)

6(-l) = 0.

From (7),(8) and lemma 1 it also follows that 6(c,a,x) is continuously

differentiable with respect to a. We also note that 6(c,±l,x) = 0 and

that, for a E (1,1), 6(c,a,x) is an increasing function of x because

the right hand sides of (7),(8) are > 0.

For later use we also introduce the angle a(c,a,x) which is defined

as 6(a,x) with the vector u(c,a,x) replaced by its derivative u (cax)

a

with respect to a. It may be useful to note that, if E is the surface

in the space of u,v,x defined by the solutions of (6), then u (cax) isa

tangent to the cross section of E at x at the point (u(c,a,x), v(c,a,x),x)

(see fig. 2).
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v

'u(c, a,cx)a

Fig. 2

It is easily seen that a(c,a,.) is the solution of the problem

x c( sin 2 + f'(u(cax))cos2 a

(9)
a(-l) = 0.

Now consider an interval [-ij]c[-l,l] and let c be the supremum

of c(x) in [-ti]. Then for x E [-tL] (8) implies

V.

(10) 6 > 1 sin 26 + f'(O)CoS 26.
c

Since a simple computation shows that the solutions of (10) with the equality

sign increase of w each time that x increases of r(f'(0)/c)-I 2, from

(10) and the fact that 6(c,a,x) is a nondecreasing function of x, it

follows that

6(cal) > w. Integer part of f21 ' (0) 1/2]

Toc ,(c,.,1) and the fact that

This estimate together with the continuity of 6(c,),l) and the fact that
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6(c,±1,1) = 0 imply

Theorem 1. The number N of nonconstant equilibria of (1) satisfies the

condition

(11) N > 2. Integer part of L k.

Remark. In the proof of theorem 1. no use was made of the eveness of c

and oddness of f. Thus theorem 1. holds for generic c,f. We also note

that the conclusion of theorem 1. is also true if [- ,t] is replaced by a

measurable set E a [-1,1] of measure 2T.

Let s = {a16(c,a,l) = kff). The set sk can be identified with the

set of equilibria of (1) that have exactly k zeros. If the right hand side

of (12) is > 2k, then sk is nonempty and by mean of equation (7) it is

possible to obtain some information on the "shape" of equilibria. To this aim

let 0 < u <1 and a E sk be given and -Pca [-1,1] be the set where

Iu(a,x)I < u. To get a bound for the measure of -X A (-nR) we let (xl,,x)

be the smallest interval containing n x ( ), L = x2 - x1  its length, and

-de

d min f(u)/u, then by applying to (7) the same procedure used for deriving
Iuju

(10) from (8) we obtain

>1 2 - 2
6 x sin26 + n cos26 , x EA (-L)

C

and therefore, since 6(c,a,x) is an increasing function of x,

6(c,a,x2)

L < 2 2
f6(c,a,x 1 lsin 6+yicos 6

C
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From this estimate it follows

(12) L < k ) 1C
T1

because 6(c,a,x2) - 6(c,a,x1 ) < kw. The estimate (12) shows that

inf(lu(c,a,x)I) converges in measure to 1 in (-9,.) as c* 0.
aEsk

For k 1 nothing can be said on the behavior of solutions in sk outside

the interval (-,i) and solutions in sk could be almost trivial in the

sense that they could be near zero outside (-J,I) and oscillate in (-J,T).

This can not happen when k =1 because solutions in s1 are monotone and

therefore if there is a point x E (-Jj) where Iu(c,a,T)j is near 1 the

same is true in [-l,i] or in [x,l].

In what follows we are interested in solutions of (4) that are odd

functions of x. It is easily seen that, due to the assumption that c is

even and f is odd, when on the basis of (11) it is possible to conclude

that s1 is nonempty, then it also contains at least a pair of odd solutions

that transform in each other under the transformation x - -x. Clearly, if

u(c,a,') is one of these odd solutions, and Iu(c,a,x);11 < c in [-l.i]

then Iu(c,a,x)+lI < c in [-i,l]. Therefore on the basis of (12) we have

Theorem 2. For any c such that the right hand side of (11) is > 2, problem

(1) has an equilibrium which is an odd and increasing function of x. If c

is deformed so that c 0, then all odd increasing equilibria of (1) converge

to the function

-1 for x E [-1,0)

z = 0 for x = 0

1 for x E (0,1]



and the convergence is uniform in compact sets in [-1,0) U (0,1].

In the statement of theorem 2. and in the following, we always refer

to the increasing equilibrium, with it being understood that there is also

a decreasing equilibrium that transforms into the other one under the trans-

formation x -i* -x.

3. Stability.

Let Co E-i be the function defined by

0 
I

o xE (-,).

In this section we prove the following

Theorem 3. Let f be a continuously differentiable odd function that

satisfies (2). Then there is a set W c such that

(i) W is open and connected in f

(ii) co belongs to the closure of W in

(iii) for any c E W problem (1) has an odd increasing (ard an odd

decreasing equilibrium which is stable.

Note that theorem 3. implies

Corollary. For any odd C -function f that satisfies (2) there is.a

c E-' such that problem (1) has a stable nonconstant equilibrium.

To prove theorem 3. we need a few lemmas.

VN

4,
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Lema 2. If u(c,a,.) is an equilibrium of (1) and X is the first eigen-

value of the linear problem

r (Cx)x + f'(u(ca,x))w = Xw,

(13) Wx(-l) = W x(1) =0

c(±+t)w (±+) = c(±)w (±E),
x x

then u(c,a,') is stable if X < 0, unstable if X > 0.

The proof of this lemma is given in [1].

Lemma 3. Let .9'cfd be the set of functions c such that (1) has a

stable nonconstant equilibrium the stability of which can be ascertained by

the fact that the largest eigenvalue of the linear problem (13) is negative.

Then Y is open in .

Proof. If S' is empty, the lemma is obvious. Therefore we assume that

is nonempty. Then there exist c E a E (-1,1) -. {0) and k > 0 such

that

6(c,a,l) = kw,

and the largest eigenvalue X of problem (13) is negative. If one lets

w = r cos v, cw = -r sin v in equation (13), it is found that r,v satisfy

(14) r = sin vcos v (f' (u(c,a,x)) - - " X) r,x c (x)
(15) Vx =  sin2 v (f'(u(c,a,x))-X)cos V,

with the boundary conditions v(-l) = 0, v(1) = iv for some integer i.

.- 4o . . . . * . . . .S . . . . . . . . .
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But i must be zero because the eigenfunction w corresponding to the

largest eigenvalue never vanishes and therefore v must stay in the interval

(-w/2,w/2). Since X is negative, for v = o, the right hand side of (9) is

always smaller than the right hand side of (15); therefore, we have

a(c,a,l) < v(l) f 0. On the other hand, equation (9) implies a(c,a,x) > -

It follows that sin(6(c,a,l) - a(c,a,1)) 0 0. Since the derivative of 6

with respect to a is related to a by

22
p 6a  - 2

(16) 2 2 2= sin (6-a)
p 6a+Pa

it results 6 (c,a,l) 0. Then the lemma follows by the implicit function
a

theorem.

Remark. Lemma 3 is actually a special case of a general situation. In fact,

the largest eigenvalue being negative for an equilibrium point u0 , implies

the semigroup generated by the linear variational equation is exponentially

asymptotically stable. Thus, small perturbation in c will yield another

equilibrium point near u0 also has the largest eigenvalue negative and it

will be stable.

In the proof of lemma 3, we have seen that a(c,a,l) < 0 is a necessary

condition for X to be negative. We note that this condition is also suf-

ficient. This follows from the fact the solution of (15) depends continuously

on X, coincides with a(c,a,.) for X = 0, and increases unboundedly as

A -- for x 0 -1. Therefore, if a(c,a,l) is negative, there exists a

unique negative A0  such that the solution of (15) vanishes at 1. Then,

if r(.) is any non zero solution of (14), w(.) = r(.)cosv(.) is an eigen-

9e

°'

...., ...,.. ...U,,. ...- ,. -. ,. . ,. . .I.. - ... , , . .,-, . . . , . , . , .
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function of (13) that does not vanish in (-1,1]. Thus X0 < 0 is the

largest eigenvalue of (13). Therefore, we can state

Proposition 1. A necessary and sufficient condition in order that the

largest eigenvalue of problem (13) be negative is that a(c,a,1) be

negative.

Lema 4. Let c EC- be a function of type (3) and (1). be problem (1)

with c = c. Then if co is sufficiently small, problem (1) has an odd

increasing equilibrium u(c,a,.) such that the largest eigenvalue of the

corresponding linear problem (13)- is neative.

c
2

Proof. By theorem 1, if co < - f'(0) there exists an a E(-1,1) - (01
0.-2

such that u(ca,.) is an increasing equilibrium of (1)-. The same condition
c

together with the evenness of c and the oddness of f ensure that a can

also be chosen so that u(ca,.) is an odd function. To prove that the

largest eigenvalue of the linearized problem at u(c,a,.) is negative if c0

is sufficiently small, we recall (12] that the eigenvalues of (13) do not

decrease if f'(u(c,a,x)) is replaced by a function q(x) > f'(u(c,a,x)). It

follows that, if we let q = max f' (u(c,a,L)), it suffices to show that
Lu>u(' ,;,)

for c0  small, the largest eigenvalue of

Wxx + jqw aw , x E (-I,-I) U (Itl)
(17) C =(.

1COWxx + fcw(ux( wx))w =w, x E (-,)

w(-I) ()l) 0

I1w8Co -) + cwxC- )S... Wx~l ) oWx(I

is negative.

a.

- S.* , . . S* .._ *- -. . .. ". . .-. -. . .. .. . '. ' . '. - ' . , . , . . . - - . . . ,. - . . , . . - ..
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From a result of Yanagida [10], it follows that the largest eigen-

value of this problem is negative if there is a strictly positive function

w that makes the left hand sides of (17) equal to zero, satisfies the last

two equations (18) and moreover, is such that

(19) w (-1) < 0, w0 (1) > 0.

We look for an even such w0  and therefore, we assume w ox(0) = 0 and

consider only the interval [0,1]. Since f'(l) < 0 and by theorem 2,

u(cal) - 1 as c0 ) 0, q is negative for small value of co. Therefore,

- if w0  exists, in the interval. [1,1], it must have the expression

(20) w0 (x) = A sinh [(-q)I/ 2(x-1)] + B cosh [(-q)l/2(x-.)]

and the coefficients A,B must satisfy the conditions

(21) A > 0, B > - tanh 1/2

ensuring that w0 (x) is positive in [t,l] and w ox(1) > 0.

To compute w0(x) in the interval [0,1], we must solve the problem

c0woxx + f'(u(c,a,x))w 0 = 0, x E (0,),

(22)
w0 (0) = C, woxO) = 01

where C is a positive constant to be chosen later.

From now on we set for simplicity u = u(c,a,), u = u(L), U = u(1). In order

to solve this problem we must overcome the difficulty lying in the fact that

u is only known to be an odd increasing solution of problem (4)-. To this
C

.. .. .
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end we observe that since u is increasing, we can perform the change of

variable x = u-(u) d-f C(u). By making this change of variable in (4)-
c

and by observing that the oddness of u implies F(0) 0, we see that

satisfies

-C0  + f(u) = 0 u C (0,u),

(23) " to+ f(u) = 0 u E ( O,u),

I (O) =0 , (U() =J,
(24) lira Cu) = 1, lim '(u) = .

By using the fact that .= ,one sees that the same change of variables

applied 
to (22) yields

P2 0 w 0- W+ f'w = 0, u c (0,u),
C(2S)• (2 5) C, ' w'o(°) = 0,

where w0  has been identified with the function wo(.)). From (23) it

follows that, for u E (O,u)

Co 2 f + K def g(u),

---siiu
where K > -2 f(s)ds is an integration constant that together with u,u

satisfies the conditions

... ,... .. ........ ,.... . . . .. . .\. . '. .. •. ... , -•. .. "-'
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r.ju du =1

clg (6 ( 2  f(s)ds)1/2

C6g(u) f(s)ds,

which correspond to the last two conditions (24). Sinc g' = -2f and the

first equation (23) implies that the coefficient of w0  in equation (25)

is equal to -f, equation (25) becomes

"gw0 - 0 + f'w 0  (gw0 + fW = 0.

Thus gwo + f 0 = const = 0 because w0 (0) = 0 and f(0) = 0.

It follows that, with a proper choice of the constant C appearing

in (25),

1/2(27) w0 = gl/ (for u E [O,u]).

If the expressions (20)(27) are patched together at x = Z (corresponding

to u u) by imposing the conditions

w0  ) 0o('), Wox(+) = c owxC),

it is found that

A (g()) , B =-c0 (u)l/2=

Therefore, it follows that if

col/f(u)
(28) 0 tanh[()/c-)]

1/ /2 (g 1/ /2
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then w0satisfies all the conditions ensuring that the largest eigenvalue

of problem (17)(18) is negative. We shall prove that this is the case for

c sufficiently small. The proof is a discussion of the asymptotic depen-

dence of u,g(u) on c 0  defined by equations (26) for c 0 +0.

By the change of variables u =u + (u-u)-r, s =u + (ii-u)a, the

first of equations (26) transforms as

(29) 1/ fl(l... Ty/2(fl f(1+6(T,a))( -+ (1TW ) d) d T 1-

where

5(~)=-[(l-ii) (uu*-)(-r1

u-u

As u,u, also 6 and a depend on c. Let a =lim sup a. Since

00

6(TO)-*0 uniformly as c0 * 0. Therefore, f(l) = 0 implies that the

ratio f(1+6(T,cI))/T(T,O) converges uniformly to f'(l) 0. This and

equation (29) imply a < ~

We also have

(30) lim inf I f f(s)ds = lim inf 1r f(s)ds
0.0 (1-j)2 iuc - 2. f-u (u- )2

c 1

lim inf .1.(f(l+ 1 ))(-d,

c 0 2 01 f Ct
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with '(t) = (u-l) + ( -u)r• Since T'X(T) 0 uniformly as c0  0,

the ratio f(l+r'())/F(T) A f, (1) < 0 uniformly as c 0 + 0. From this

and the fact that Il is > 1, it follows

1 I f(l+t' (T)) - 1 .T1
(31)olim inf l  (T-c-)dr >-f' (1) (l-)dT - .f'(1).

Equations (30)(31) and the second condition (26) imply

cr ifcg(u)
(32) li inf 0 U) -f().c o -1 0 (I-V) 2 - -'  I)

Therefore, by taking into account that li. q - f' (1), we obtain

c0*

Co1/2f(j)1

lir sup 0 1 lir supc f(l+(u-1)) l-u)
c0 +~ 0 - )l2(gC-))l/ 2  (-f'Cl)) l / 2  c0  0 (1-) c12(g(u))

that is: the left hand side of (28) converges to zero as c0 - 0. This

proves the lemma because the limit of the right hand side is > 0.

Proof of theorem 3. By lemma 4, there is a number c > 0 such that, if

def. -
y a jj" is the curve Y- = (O < co < C) and c E y, then problem (1)-

has an odd increasing equilibrium which is stable. Since by lemma 3 -9 is

open in Si+ there exists an open neighborhood i of y in M+ such that

for c C i problem (1) has a stable equilibrium uc. It is easy to see that

can be chosen so that uC  is odd and increasing. In fact from the proof

of lemma 3 it follows that for c in a neighborhood of c C y, uc  is the

only eqidlibrium in a neighborhood of u.. On the other hand the evenness
c

e.................... ... . . ., , .a., , , , . . ., . ., . . . .. _. . . .. .
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of c and the oddness of f imply that also vc defined by v CX) =

-U (-x) is an equilibrium of (1). Since u is odd and u ) u as
C c

c - c also v converges to u- as c - c. This contradicts uniqueness
c c

of u unless uc  is odd and therefore proves oddness. Since uc is

close to u it vanishes only at x = 0. From this and the fact that
c

solutions of (4) with only one zero are monotone, it follows that u isc

increasing. The mapping c0 -* c is continuous as a map from (0,e) into

Y+. Therefore y is locally compact as a subset of +
. Thus, by standard

arguments there is a continuous function * (0,1) * such that the curve

y = {cl'c = O(s), s E (0,1)) is contained in W and c 0 is in the closure

of y in J?. Since W is open and Y is continuously embedded in

W nfW is open in W. From this and the continuity of 0 it follows that

there is a subset W c W n W which is open and connected in Yf and contains

-0y. Since c is in the closure of y in f' the proof is completed.

4. Secondary bifurcation

In this section we consider a family (c c -' of diffusion functions
E[-l,1]

c depending continuously on a parameter p. We let 6C(,a,x) df 6(c ,a,x)

and assume that c 2 < c I for V2 > P and that 6(0,0,1) = kw for some

k > 0. Then equation (8) implies that 6(V,0,1) < kn for v < 0 and

6(u,0,1) > kw. If we also assume that f satisfies the condition

(33) f(u) < f,(O)u , u E (0,1],

then from (7)(8) it follows 6(p,a,l) < 6(V,0,1) for a # 0, p E [-1,1].

Therefore sk is empty for P < 0, nonempty for V > 0. Thus p = 0 is a
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bifurcation point. It is easy to see that in this situation, for P'> 0

and small, sk contains solutions that are small and converge to zero as

z-' -O, i.e., solutions that bifurcate from the zero solution. These solu-

tions are unstable for V small because the largest eigenvalue of problem

(13)with u E 0 is f'(0) > 0 and the eigenvalues of (13) are continuous

* functions of c Ei.l On the other hand we have seen in theorem 3 that if

c is suitably chosen then there exist stable nonconstant equilibria of

(1). Therefore, it can be .expected that, if u is a continuous function

of p E[0,1] such that u0 = 0, u is a solution of (4) in sk for

* v E (0,1], and uI is stable, some kind of secondary bifurcation takes

place at somep E (0,1). This conjecture is true, we have in fact the

following.

Theorem 4. Suppose that c1 is as before, f satisfies (33), u5  is an

equilibrium of (1) which is equal to zero for v = 0, has exactly kcp

zeros for pE(0,1], depends continuously on p and u1  is stable (in the

sense that the largest eigenvalue of the linearized problem at u is
1-

negative), then there exist numbers 0 < v1 <."< . k < 1 such that V

i = 1,...,k is a bifurcation point.

.- def
Proof. Let a = u (-1). Then a= 0 and therefore (7),(8) imply

-°(0,a 0 ,l) = 6(0,a 0,l). We also have 6(p,a ,l) = kw for v E (0,1], thus

by the continuity of 6 with respect to c,a and the continuity of c

uP with respect to v, it follows a(0,a0,1) = kn. On the other hand

Proposition I and the stability of uI imply a(1,ai,I) < 0. Therefore,

by continuity there exist 0 <p 1 < p< pk <1 such that

.< - < 1
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a(i,a l) = (k-i)r 1 = l,...,k.

Moreover, it is obvious that pis i 1,...,k can be chosen so that in

any neighborhood of pi there etist U < Ui < i such that o(p,a_,l) >

(k-i)r > a(i,a=,l). This on the basis of the geometrical meaning of the

angle a implies that Vi is a bifurcation point.

Theorem 4 says that going through k secondary bifurcations is a

necessary condition in order that an equilibrium with k zeros that bi-

furcates from the zero solution becomes stable. From the proof of the

theorem and Proposition I it follows that if, as U goes from 0 to 1,

u experiences exactly k bifurcations at 0 < U < ... < 1 each one

of which is simple in the sense that at any ui two new solutions bifurcat-

ing from u V appear, then u1  is stable (see fig. 3 for the case k = 2).

This observation shows that in a certain sense the converse of theorem 4 is

also true.

• .. . ... -,--.•" .- %m . . . . . ... " o% .. •.* . . •. .. . . . .
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